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SUMMARY

In this paper, we deal with the problem of time-optimal trajectory planning and feedforward controls for
robotic manipulators along predetermined geometric paths. We propose a convex relaxation to generate
time-optimal trajectories and feedforward controls that are dynamically feasible with respect to the complete
nonlinear dynamic model, considering both Coulomb friction and viscous friction. Even though the effects
of viscous friction for time-optimal motions become rather significant due to the required large speeds,
in previous formulations, viscous friction was ignored. We present a strategic formulation that turns out
non-convex because of the consideration of viscous friction, which nonetheless leads naturally to a convex
relaxation of the referred non-convex problem. In order to numerically solve the proposed formulation, a
discretization scheme is also developed. Importantly, for all the numerical instances presented in the paper,
focusing on applying the algorithm results to a six-axis industrial manipulator, the proposed convex relax-
ation solves exactly the original non-convex problem. Through simulations and experimental studies on the
resulting tracking errors, torque commands, and accelerometer readings for the six-axis manipulator, we
emphasize the importance of penalizing a measure of total jerk and of imposing acceleration constraints at
the initial and final transitions of the trajectory. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many industrial applications of robot manipulators, time-optimality is crucial for maximizing
robot productivity. Typical applications, such as palletizing and pick-and-place, require an operator
to specify a collision-free geometric path that the robot must follow in order to accomplish a partic-
ular task. This path specification is usually performed through a so-called teach-pendant or through
a path-planning algorithm [1]. Once the geometric path has been specified, it is important to find out
how to move the robot optimally along that path in the shortest time physically possible. Solving
this optimal trajectory planning problem entails obtaining as a function of time the trajectories and
feedforward controls, which guarantee motion along the path in minimum time while satisfying the
manipulator’s nonlinear dynamic model without exceeding the physical torque limits of the actua-
tors. We shall refer to the property of satisfying the nonlinear robot model as dynamic feasibility of
the trajectories and feedforward controls [2].

First successful approaches to address this problem date back to the 1980s. Pioneering work is
presented in the classic papers [3-5], where the referred problem of time-optimal trajectory planning
is addressed for manipulators with n degrees of freedom (DOF). In [3], it was suggested that time-
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optimal solutions are found by choosing the acceleration to make the velocity as large as possible at
every point without violating the constraints. It was then shown that to minimize time, the acceler-
ation always takes either its largest or its smallest possible value, the so-called bang—bang control.
Therefore, search algorithms were proposed that find switching points in the so-called velocity
limit curve. At these switching points, instant changes from maximum acceleration to maximum
deceleration and vice versa must occur. In [4], additional properties of the velocity limit curve are
rigourously analyzed, which allowed for simplification in the computation of the switching points.
The main disadvantage of these algorithms is that pure time-optimal solutions produce accelerations
and torques that require sudden changes, which are impossible to handle by real servo-amplifiers.
Besides, these kind of bang—bang time-optimal solutions are bound to excite undesired vibration
modes, which are inherent to the mechanical structure.

Optimal control methods have also been utilized to tackle the referred time-optimal trajectory
planning problem, which in principle make it possible to incorporate additional criteria that gen-
erate more feasible solutions for implementation. In [5], additional criteria are added to trade off
time-optimality against squared velocity and joint torques. To solve the optimal control problem, a
dynamic programming approach was adopted. In [6], time-optimality is traded off against a term that
represents control energy; the method to solve the referred problem is based on the necessary con-
ditions given by Pontryagin’s maximum principle, which then requires solving a 2-point boundary
value problem using shooting methods.

Over the past decades, a prominent approach to address numerical optimal control problems has
gained popularity, mainly because it makes it possible to obtain numerical solutions for seemingly
complex problems [7]. In this approach, the optimal control problem is directly discretized to obtain
a large-scale nonlinear optimization problem, allowing the incorporation of more realistic equality
and inequality constraints that are easily handled by nonlinear optimization methods. In the specific
context of time-optimal trajectory planning along predefined paths, in [8], the problem is formu-
lated as a large-scale nonlinear optimization problem. Attention is paid to the adverse effects on
performance induced by pure time-optimal solutions. The formulation in [8] is a general nonlinear
optimization, and therefore, there are no guarantees for finding the global minimum.

More recently, motivated by the widespread reputation of convex optimization to efficiently solve
engineering and science problems, a modern formulation of the referred problem of time-optimal
trajectory planning was proposed in [9], where theory and tools from convex optimization are uti-
lized. The advantage of formulating a problem as a convex optimization problem is twofold: (i)
theoretical and conceptual advantages, for example, any local minimum is a global minimum of
the problem and (ii) the problem can be solved reliably and efficiently using mature interior-point
methods or other specialized methods for convex optimization [10].

A main shortcoming of the approach presented in [9] is that viscous friction is neglected in order
to have a convex formulation. This drawback has already been pointed out in [11], although no
solution is proposed other than assuming instead that the full dynamic model is linear, which is
clearly not true at all for robotic manipulators. It is also well known that time-optimal trajectories
represent the fastest motions achievable by the physical system, which require the manipulator to
move at really high speeds. This means that the effects of viscous friction, which are proportional
to velocity, will be rather significant (even more significant than Coulomb friction). Therefore, in
order to truly obtain the fastest solutions dynamically feasible for the real robotic system, viscous
friction should not be neglected in the problem formulation.

In this paper, we present contributions to the referred problem of time-optimal trajectory planning
along predetermined geometric paths. We attempt to incorporate the complete nonlinear dynamic
model, considering the effects of both Coulomb friction as well as viscous friction. Motivated by
theoretical properties and efficient algorithms to solve convex optimization problems, we explicitly
pursue a convex formulation, which improves and expands the scope of the formulation presented
in [9]. We construct the initial formulation in a specific manner that results in a non-convex opti-
mization problem, which nevertheless leads to intuitively propose a convex relaxation that seems
likely to find the optimal solution to the original non-convex problem. In order to numerically
solve the proposed convex relaxation, a discretization scheme is developed using methods from
numerical optimal control. Importantly, for all the numerical instances presented in this paper, the
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proposed convex relaxation solves exactly the original non-convex problem. We then demonstrate
that large nonzero accelerations at the beginning and end of the trajectory, which are required by pure
time-optimal solutions, would seriously degrade the system performance near those time instants.
Therefore, acceleration constraints are incorporated that guarantee smooth transitions from 0 and to
0 at the beginning and at the end of the trajectory, respectively. Likewise, it is shown how to incor-
porate a term that penalizes a measure of total jerk to trade off time-optimality, which generates near
time-optimal trajectories with no sudden changes at the intermediate points.

The final formulation with acceleration constraints and penalization of total jerk is also a convex
problem, which still represents a convex relaxation to the original non-convex problem. Merci-
fully, for all the numerical examples presented in this paper and the many more tried out by the
authors, this convex relaxation turns out to solve exactly the original non-convex problem, entail-
ing the generation of near time-optimal trajectories that are dynamically feasible with respect to the
full nonlinear dynamic model including viscous friction. This suggests our formulation as a pow-
erful heuristic that shall often find the optimal solution to the referred non-convex problem. The
near time-optimal trajectories and feedforward torques are feasible for implementation on the real
robotic manipulator without seriously degrading the system performance, at the expense of a mod-
est increase in traveling time. Experimental results on a six-axis industrial manipulator are finally
presented to verify the concrete benefits of our formulation.

2. DYNAMIC MODEL OF ROBOTIC MANIPULATORS

The dynamic model of a robot manipulator can be systematically derived with a Lagrangian formal-
ism. For a manipulator with # joints, a set of coordinates ¢;, i = 1, ..., n, known as the generalized
coordinates, is chosen to effectively describe the link positions of this # DOF manipulator [12]. For
a serial-chain industrial manipulator, ¢; represents the relative angle of link i with respect to link
i — 1. Likewise, the generalized forces Q; are given by the nonconservative forces, that is, the joint
torques generated by the actuators as well as the joint torques due to friction [13]. By considering
viscous and Coulomb friction, therefore, Q; = t; — dyiqi — fei sign(qg;), where dy; and f;; are
the coefficients of viscous and Coulomb friction and 7; represents the joint torque generated by the
i-th actuator.

Throughout this paper, the following vector differential equation, which is given as the standard
dynamic model in most robotics textbooks [12, 14], shall be used as the nonlinear dynamic model
for an n DOF robotic manipulator:

M(q)g +C(q.9)q +g(q) + Dvg + Fcsign(g) =7, ey

where ¢, ¢, § € R” are the joint-space positions, velocities, and accelerations; M (¢) € R"*" is the
positive-definite inertia matrix; and C (g, q) € R™*" is the Coriolis and centrifugal forces matrix;
g(q) € R” represents the vector of torques due to gravity; diagonal matrices D, € R™*" and
F ¢ € R™" represent the coefficients of viscous and Coulomb friction, respectively.

On the other hand, it is a standard exercise in Lagrangian dynamics to show that the equations of
motion (1) are equivalently written in scalar form [12, 13]:

n n n
> mij@d; + > cii(@drd; + gi(q) =T — dvigi — feisign(@). i=1....n (2)
Jj=1 Jj=1k=1

where m;;(q) is the (i, j)-th element of M (q), c;;x(q) are known as the Christoffel symbols of the
first kind, and g; (¢) is the i -th element of the gravity vector. The equations of motion in scalar form
(2) shall prove useful later, when showing a certain result of the time-optimal trajectory planning
problem, which would otherwise seem rather obscure.
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3. PROBLEM STATEMENT AND FORMULATION

In order to generate trajectories and feedforward controls that are dynamically feasible, we consider
the full nonlinear dynamic model in vector form (1), or equivalently, in scalar form (2). Assume
that the joint-space geometric path has already been determined and parameterized by h(s) € R”,
where s is a normalized and monotonically increasing parameter, that is, s(¢z) € [0,1] and § > 0.
It should be required that & (s) be twice continuously differentiable in s. The goal is to figure out
how to move the robot along A (s) in the shortest time physically possible. Equivalently, obtain the
time histories of desired position, velocity, and acceleration trajectories (g4(¢).q44(¢),§4(¢)), and
the corresponding feedforward controls 74(¢), which are dynamically feasible with respect to the
complete robot dynamics (1), achieving motion along /(s) in the shortest time physically possible
while satisfying the torque limit constraints: Ty < T4(?) < Tmax.

3.1. Formulation as a mathematical optimization

From the equality constraint ¢4 = h(s), it is readily shown that
da=W ()3, iy =W ()5 + K (5)3, 3)

where h'(s) := dh/ds, h"(s) := d?h/ds*. Notice that § = ds/dt and § = d?s/dt? could
be thought of as the pseudo-speed and pseudo-acceleration along the path, respectively. Because a
solution (¢4, §4. 4 4, and74) must be dynamically feasible with respect to (1), we must have

19 = M(h(s)) [h"(5)5* + h'(5)5] + C (h(s), k' (s)5) h'(s)$ + g (h(s))

N . N “)
+ Dyh'(s)s + Fcsign (h'(s)s).

Because dynamic models (1) and (2) are equivalent, the i-th element of C (h N (s)j) h'(s)s €
R" is written as follows:

n n
DO ik’

Jj=1lk=1

[C (h(s). ' (5)5) I (5)3],

n

D> ik’ | §% i =1.....n,

j=1k=1

from which it should be clear that C (h(s), h’(s)$) h'(s)s = C (h(s), h’(s)) h’(s)$*. On the other
hand, because § > 0, then F ¢ sign (h'(s)s) = F ¢ sign (h'(s)). Therefore, (4) is written as follows:

Tq = a1(5)§ + a2(5)$ + az(s)$ + aa(s). ©)
where a;(s) € R",i = 1,...,4, are defined as follows:

ai(s) ;=M (h(s))h'(s).  ax(s):= M (h(s))h"(s) + C (h(s).h'(s)) h'(s)

: / ) : / (6)
as(s) ;= D,h'(s), as(s) := Fcsign (h'(s)) + g (h(s)).
Because h(s), h'(s), and h” (s) are already known, then a;(s), i = 1,...,4 can be entirely pre-
2

computed. The unknowns in parametrization (5) are §, §°, §, and T4, which means we can optimize
over these functions so as to minimize the total traveling time along % (s). Consider therefore defin-
ing a(s) := §, b(s) := §2, c(s) := §, and T4(s), as optimization functions to be determined as
functions of s. Because a one-to-one relationship between s and ¢ shall be enforced (i.e., § > 0),
finding the unknown functions of s implies that they can be unambiguously recovered as functions
of . In this manner, t4(s) has a simple affine parametrization in a(s), b(s), and c(s):
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74(s) = ar(s)a(s) + az(s)b(s) + az(s)c(s) + as(s). @

Notice that with the definitions of a(s), b(s), and c(s), two additional constraints must be
incorporated: (i) b(s) = b'(s)$§ = 285 < b'(s) = 2a(s) if § > 0 and (ii) c(s) = /b(s).
On the other hand, using the fact that § > 0, the total traveling time f; can be expressed

as follows:
tr Urds\ 7! 1
tr = dt=/ (—) ds=/—ds. 8
s /0 o \df 0 c(s) ®

It follows from (8) that to minimize the traveling time ¢z, the pseudo-speed c¢(s) along the path
must be as large as possible. Because several of the aforementioned derivations required s > 0,
we should treat carefully the case when §o = §y = 0, in which case the objective functional (8)
is unbounded previously. Therefore, the integral in (8) is defined instead in the interval [0y, 1_],
where 04 and 1_ will be explicitly defined in Section 4; notice that ¢(04+) # 0 and c(1-) # 0 even
if ¢c(0) =c(1) = 0.

With all the aforementioned considerations, we formulate the referred time-optimal trajectory
planning problem with full dynamic model (1), as the following mathematical optimization problem:

-
minimize /0 . @ ds
subjectto  b(0) = s3.b(1) = 5%.¢(0) = do.c(1) = 57
Ta(s) = ai(s)a(s) + a2(s)b(s) + asz(s)c(s) + as(s)
Tmin < Td(S) < Tmax (9)
Vs € [0,1]

b'(s) = 2a(s),c(s) = /b(s)
b(s),c(s) >0
Vs € [0+, 1_],

where a(s), b(s), c¢(s), and T4(s) are the optimization functions and therefore the rest is data. Opti-
mization problem (9) shall be referred to as infinite dimensional because s varies continuously in
[0, 1], implying an infinite number of equality and inequality constraints. It can also be viewed as an
optimal control problem [15], with control input a(s), linear differential constraint b'(s) = 2a(s),
and algebraic state equalities and inequality constraints.

The following properties of formulation (9) are important to point out: (i) The objective func-
tional is convex in c¢(s);* (ii) The constrained robot dynamics and all inequality constraints are
affine; (iii) The differential equality constraint ’(s) = 2a(s) is linear; and (iv) The only nonlinear
equality constraint is c(s) = /b(s) Vs € [04, 1_]. It is therefore deduced that formulation (9) is
a non-convex optimization problem [10]. The non-convexity of (9) is due to the nonlinear equality
constraint ¢(s) = /b (s) Vs € [0, 1_], which shows up because of viscous friction.

3.2. Convex relaxation

Relaxing a problem to obtain a convex approximation is a viable strategy to deal with non-convex
problems. Relaxing the problem simply increases the feasible search region. If, even given this larger
region, the optimal solution is found in the original region, then the solution to the relaxed problem
is a solution to the unrelaxed problem. Notice that because b(s), c(s) > 0 for all s € [0, 1_], the
following chain of equivalences is always true:’

¥Consider the function f(c) = 1/c¢,c > 0, whichis trivially a convex function of c. Because the non-negative weighted
sum of convex functions is convex [10], it follows that the integral in problem (9) defines a convex objective functional.

$We have used the simple fact that, satisfying any equality constraint, say f1(x) = f2(x) is equivalent to satisfying
two inequality constraints, namely, f1(x) = f2(x) & f1(x) < fo(x) and f1(x) > f2(x).
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1 1
\/b(S) =C(S) < m = ﬁ

1 1 1 1 (10)

e 0™ S o

& c(s)?2 —b(s) <0and — c(s)? + b(s) <O0.

The inequality constraints ¢(s)> — b(s) < 0 are all convex in b(s) and c(s) forall s € [04,1_].1
On the other hand, all the inequality constraints —c(s)? + b(s) < 0 are concave in b(s) and c(s).
In an optimization problem, concave inequality constraints imply that the optimization problem is
non-convex. Therefore, the proposed convex relaxation of (9) consists in simply dropping all the
concave inequality constraints in (10). In other words, we replace the nonlinear equality constraints
c(s) = +/b(s) Vs € [0, 1_] in (9) with the convex inequality constraints 1/1/b(s) < 1/c(s) Vs €
[0+, 1_]. Therefore, the following convex relaxation of (9) is obtained:

-
1

minimize / —ds
04 C(S)

subjectto  b(0) = s3.b(1) = 52.¢(0) = do.c(1) = 57
Ta(s) = ar(s)a(s) + az2(s)b(s) + az(s)c(s) + aq(s)
T min < Td(s) < T max (11)
Vs € [0,1]

b'(s) = 2a(s),1//b(s) < 1/c(s)
b(s),c(s) >0
Vs €[04, 1_].

In general, there are no guarantees that for all possible scenarios, the optimal solution
(a*(s), b*(s),c*(s), rg(s)) to convex relaxation (11) will solve exactly the original non-convex
problem (9). Nonetheless, the reasoning behind proposing convex relaxation (11) goes as follows:
Because 1/c(s) > 0 for all s € [04, 1_], and because the integral over [0y, 1_] of 1/c(s) is mini-
mized, then at optimum, the inequality constraint 1/+/b(s) < 1/c(s) is likely to be active. That is, it
is likely that 1/+/b*(s) = 1/c*(s) for all s € [04, 1_]. In fact, with the aforementioned argument,
the referred inequality constraint would indeed be tight in general for all s € [04, 1_] if ¢(s) were
not constrained to satisfy the equality constraint T4(s) = a1 (s)a(s)+az(s)b(s)+asz(s)c(s)+as(s),
which is actually the only additional constraint on c(s). As it turns out, for all the numerical
instances reported in this paper and the several more tried out by the authors, exact tightness of the
inequality constraint 1//b*(s) < 1/c*(s) is attained for all s € [0, 1_].

Motivated by the aforementioned observations, in Section 6, we choose to incorporate accelera-
tion constraints and a measure of total jerk penalization into problem (11), which shall cope with
the drawbacks of pure time-optimal solutions. Importantly, these additions do not explicitly impose
more equality or inequality constraints to satisfy by c(s). Clearly, when adding more constraints
into problem (11), the feasible search region is reduced, which decreases the likelihood of tight-
ness for 1/4/b*(s) < 1/c¢*(s) even if c(s) does not explicitly feature in the additional constraints.
Nevertheless, for our particular case scenarios, it was observed that when adding constraints into
problem (11) that explicitly featured c(s), exact tightness of 1/4/b*(s) < 1/c¢*(s) was no longer
attained. In contrast, when adding constraints that do not explicitly featured ¢ (s), such as the referred
acceleration constraints and penalization of total jerk, exact tightness was still achieved.

IIn an optimization problem, an inequality constraint of the form g(x) < 0 is said convex if the function g (x) is
convex. If on the other hand the function g (x) is concave, then the inequality constraint g (x) < 0 is said concave. By
considering f(b, ¢) = ¢2 — b, whose Hessian matrix 82 f/3(b, c)? is positive semidefinite, we conclude (b, ¢) is
a convex function of b, ¢, and therefore, all the inequality constraints ¢ (s)2 — b(s) < 0 are convex in b(s) and c(s)
foralls € [04,1_].

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2016)
DOI: 10.1002/oca



TIME-OPTIMAL TRAJECTORY PLANNING FOR ROBOT MANIPULATORS

3.3. Infinite-dimensional second-order cone program formulation

The infinite-dimensional problem (11) is reformulated into an infinite-dimensional second-order
cone program (SOCP), which is a special class of convex optimization problems [16]. Even though
this reformulation might not be necessary, depending really on the solver to be used, its derivation is
simple and takes only a couple of lines; besides, lifting up convex problem (11) in the hierarchy of
convex problems into an SOCP shall increase the number of available solvers that can be utilized to
solve it. Unlike [9] where the reformulation as an SOCP is performed after discretization, we carry
out this reformulation directly on infinite-dimensional problem (11), which makes our discretization
procedure rather transparent. First, the convex constraints 1/4/b(s) < 1/c(s) Vs € [04+, 1_] can be
expressed as second-order cone constraints [10, 16]:

L 1 o <he e H[ ZC(S_)l]

Jb(s) (s b(s)

To have a linear objective functional, the ‘slack’ function d(s) > 0 is introduced satisfying
the following:

<b(s)+ 1, Vs €[04, 1_]. (12)
2

d(s) > —— & 1< c(s)d(s) & ‘ 2 <c(s)+d(s), Ysel0m 1] (13)

c(s) [C(S) —d(s)} 2

It should then be clear that problem (11) is equivalent to the following problem:

-
minimize d(s) ds
0+
subjectto  H(0) = so,b(l) = sf,c(()) = So.c(l) =57
T4(s) = ai(s)a(s) + az(s)b(s) + asz(s)c(s) + aa(s)
Tmin < Td(S) T max
Vs € [0,1]

2¢(s)
b(s)—1
b(s) = 2a(s)

[
c(s)—d@) ]|,
b(s),c(s) >0

Vs e [O+, ]_],

(14)
<b(s)+1

<c(s) +d(s)

where a(s), b(s), c(s), Tq(s), and d(s) are the optimization functions, while the rest is data.

4. PROBLEM DISCRETIZATION

In order to obtain a numerical solution to optimization problem (14), a discretization of this
infinite-dimensional problem needs to be developed. An important difference from the discretiza-
tion presented in [9], where a(s) is assumed piecewise constant and b(s) piecewise linear, is that
we enforce a(s) to be piecewise linear and b(s) piecewise quadratic. These results are reached
by strictly following the procedure to solve optimal control problems presented in [17]. First,
the independent parameter s in (14) must be discretized by creating a finite grid of N points,
s1 =0 < sp <--- < sy = 1. Then, the optimization variables are defined in the following man-

ner: a; = a(sy),...,any = a(sy), by = b(s1),...,by = b(sy), c1 = c(s1),...,cy = c(sy),
di =d(sy),....,dy =d(sy),and ' = 74(s1),..., 7" = 74(sy), which represent the functions
Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2016)
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a(s), b(s), c(s), d(s), and T4(s) evaluated at the grid points 51, 52, ..., Sy. According to the proce-
dure in [17], we should assume b(s) and a(s) are piecewise cubic and piecewise linear, respectively.
Therefore, the pseudo-acceleration a(s) is expressed as follows:

s —8; )
a(s) =aj +(aj41—aj) (—]), selsj,sj+1], j=L12,...,N—=1, (15
Sj+1=8;

from which it is indeed true that a(s;) = a; and a(s;+1) = a;41. Similarly, b(s) is chosen

as follows:
> s—s; \F
b(s) =Y Bjx (—’) selsjsjrtl. j=12....N-1 (16)
k=0 Sj+1 =S

where the polynomial coefficients 80, 8,1, B2, and B; 3 need to be determined explicitly. The
aforementioned representation for b(s) must satisfy b(s;) = b;, b(sj+1) = bj+1,b'(s;) = 2a(s;),
and b'(sj+1) = 2a(s;4+1), which gives four equations in the four unknowns 8,0, Bj,1, 8,2, and
Bj,3. By explicitly solving this simple system of equations, it is obtained:

Bio=0bj. Bji=2Asja; Bja=3(bj+1—bj)—2As;(aj+1 +2a;)) (17)

Bjs =2As;(aj+1+aj)—2(bj+1—bj),
where As; = sj41 —sj, j = 1,2,..., N — 1. Another requirement for a(s) and b(s) is to sat-
isfy b’(s) = 2a(s) at the grid points s;, j = 1,..., N, and at the middle grid points defined
as 5 = (s; +sj41)/2, j = 1,...,N — 1. Satisfying b’(s) = 2a(s) at the grid points s;,
Jj = 1,..., N is already guaranteed with the coefficients 8,9, 81,82, and ;3 obtained pre-
viously. The remaining requirements, b’(s;) = 2a(s;), j = 1....,N — 1, give after simple
algebraic manipulations:

bjt1—b; =Asj(ajt1+aj), j=1,...,N—-1 (18)

Interestingly, constraints (18) imply that B 3 in (17) shall be O, which means that b(s) must actually
be piecewise quadratic. Finally, expecting ¢(s)? = b(s), c(s) is assumed piecewise linear.

On discretizing the objective functional in (14), we explicitly define 04 := (1 — «)s; + as; and
I- ;= (1 —a)sy + asy—1, with « > 0 being an adjustably small parameter. Assuming d(s) is
piecewise linear, we simply use the trapezoidal rule for approximating the definite integrals:

1— 2 N-2 Sk41 1—
d(s) ds =f d(s) ds + Zf d(s) ds—i—/ d(s) ds
04 04 k=2 Sk SN—1
1
~3 [(1 ) Asi(d(04) + do) (19)
N-2
+ Y Aseldy + din) + (1— o) Asy—1(dy—1 + d(l_))} :
k=2

where d(04+) = (1 — a)d; + ad, and d(1-) = ady—_1 + (1 — @)dy. The remaining constraints
in problem (14) are discretized by evaluating them at the grid points s = s;, j = 1,..., N. Those
constraints not defined at s = 0 and s = 1 are evaluated instead at s = 04 and s = 1_, respectively.
With the aforementioned provisos in mind, the following discretization of (14) is obtained, with
ay, b, ck, 7% and dr,k =1,..., N, representing the optimization variables:

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2016)
DOI: 10.1002/oca



TIME-OPTIMAL TRAJECTORY PLANNING FOR ROBOT MANIPULATORS

1
minimize 3 |:(1 —a)As1(d(04) + d>)

N-2
+ 3 Asldi + i) + (1 — @) Asy_1 (dy—1 + d(l_))}
k=2

subjectto by = s3,by = s%.¢1 = So,cn =iy

8 = ay(si)ag + ax(sp)by + as(si)cx + aa(sy)

k
Tmin ST < Thmax
<b.+1

W]
b —1]|, (20)

k=1,...,N
bjy1—bj =Asj(aji1+ay)
j=1,....N—1
2
_C(0+)—d(0+)]

2
e — d;

I 2
(1) — d(l_)}

< c(04) + d(0y)
2

<c¢+d, [=2,....,N—1
2

<c(lo)+4d(1o),
2

where ¢(0+) = (1 —a)c; + acy and ¢(1-) = acy—1 + (1 — @)cy. The aforementioned opti-
mization problem (20) represents an SOCP, which can be solved using a variety of solvers. To solve
problem (20) and the extended formulation that shall be presented in Section 6, we use CVX, a
package for specifying and solving convex programs [18, 19], which can be installed as a Toolbox
in MATLAB®. Since CVX is a parser front-end that links to several solvers, we have configured it
to use SDPT3, mainly because for all our numerical instances, SDPT3 finds the optimal solutions
with exact tightness of 1//b*(s) < 1/c*(s), which is not always the case when setting SeDuMi as
the solver, particularly for the extended formulation with larger number of variables and constraints.

Because a one-to-one relationship between s and ¢ is enforced, there is no ambiguity in recover-
ing the time-optimal solution as a function of 7. The time-optimal velocities and accelerations are
retrieved as ¢ = h'(s)c*(s) and ] = h"(s)b*(s) + h’(s)a*(s). To complete the time-optimal
solution, it remains to recover time ¢ as a function of s as follows:

ds dt 1 S |
— =5 — = —, c(s)>0©t(s)=t(0+)+/ ——du.
dt ds  c(s) 0y c(u)
It is then easily shown that
Sk 1
(60 = 10+ [ du k=20
Sk—1 C(M)
Furthermore, at optimum 1/c(s) = d(s), thus,
Sk 1
1(sg) = t(sg—1) + / d(u) du = 1(sg—1) + EAsk—l(dk—l + dy). (21)
Sk—1
Therefore, time 7 is recovered with the following steps: (i) initialize #(s;) = 0, (ii) fork = 2,..., N
and compute 7 (sg ) using the recursive formula (21).
Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2016)
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5. APPLICATION TO A SIX-AXIS INDUSTRIAL MANIPULATOR

The time-optimal trajectory and feedforward torques (q; (1), q5(0),q5(), rg(t)) are generated for
the six-axis industrial manipulator FANUC M-16iB, which is briefly described in Appendix A.
The robot end-effector is fully determined in space by its position coordinates (x, y,z) and its
orientation, parameterized using Euler angles (¢, 8, ¥). An arbitrary Cartesian-space path with non-
constant orientation of the end-effector is designed, with the position coordinates (x, y, z) shown in
Figure 1(a), where both the initial and final positions are marked with an asterisk ‘*’, corresponding
to the robot home position. This path is obtained by choosing 33 control points in Cartesian coor-
dinates (x, y, z), marked with ‘e’ in Figure 1(a), which are then interpolated using cubic splines to
satisfy the differentiability requirement on A (s). Likewise, Euler angles (¢, 8, ¥) are interpolated
using cubic splines from a set of 33 control points that represent intermediate orientations.

The total number of grid points used to discretize the parameter s is N = 1200, which means that
the positions (x, y, z) and orientations (¢, 8, ¥) of the end-effector are known at N = 1200 points.
The corresponding joint-space path, h(s;) € R, k = 1,..., 1200 is obtained by carrying out com-
putations of inverse kinematics on the 1200 positions and orientations of the robot end-effector, for
which the robotics toolbox for MATLAB® has been used [20]. In this manner, Figure 1(b) shows
the joint-space path h(s;) € R® together with its first and second derivatives h’(si), h” (sx) € RS,
for all six joints of the manipulator. Finally, the dynamic-model vectors a1 (sx), az(sr), as(sg),
and a4(sg), k = 1,...,1200, which were defined in (6), are obtained from inverse dynamics
computations using again the robotics toolbox for MATLAB®,

The initial and final pseudo-speeds are enforced to be 0, S = §¢ = 0. The torque constraints
are SYymmetric, Tmin = —Tmax, Where Tma = (1782.4 1789.7 1647.2 97.2 108.5 79.1) T Nm,
representing the maximum torques at the link-side, that is, at the gearboxes’ output shaft that couple
directly to the robot links. The corresponding maximum torques at the motor-side, that is, at the
gearboxes’ input shaft, are given by #ma = G~ Ta = (10.21 10.21 8.60 4.30 1.58 1.58) T Nm,
where G is a diagonal matrix of gear ratios, G = diag(ry, . .., re). For practical reasons, the optimal
feedforward torques shall always be presented in the motor-side, given by u} = G -1 T5(1).

5.1. Generated time-optimal trajectories and feedforward torques

The time-optimal solutions generated when solving problem (20) are presented in Figure 2, yield-
ing an optimal traveling time 7 y = 3.447 s, which is the minimum time for the robot to move along
the path & (s). The motor-side time-optimal torques are shown in Figure 2(a), which feature bang—
bang behavior as there is always one actuator that saturates, that is, for all ¢ € [0,7¢] either u] or
u; saturate. The other actuators u3, u}, u%, and ug do not saturate but are required to change sud-
denly at those time instants when u} and u} exchange being saturated. Likewise, large non-zero

——hi ——hs ——hs ——hs ——hs he

3
3 ]
| B
0
1 : TN ]
0 0.2 0.4 0.6 0.8 1

h(s) (rad)

11
%

|
1
%
i

y (m) s %° 2 (@) 6 08 1
(a) Cartesian-space path with control points (b) Joint-space path h(s), h'(s) and h'/(s) for the 6 axes

Figure 1. Arbitrary non-trivial path used to test the time-optimal trajectory planning algorithm.
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Figure 2. Time-optimal solutions generated when solving the optimization problem in (20).

accelerations are required at the beginning and end of the trajectory, with sudden acceleration
changes at the intermediate points. The corresponding s(z), pseudo-speed c(s), and pseudo-
acceleration a(s) are all presented in Figure 2(b). Both ¢*(s) and /b*(s) are plotted together so
that they can be compared. Importantly, ¢*(s) = /b*(s) for all s € [0, 1], which means that for
the specific conditions of our application, the proposed convex relaxation (14), or equivalently its
discretized version (20), solves exactly the original non-convex problem (9).

5.2. Simulation of time-optimal solution

Simulations are carried out in order to study the effects of implementing the time-optimal solution
(qg(t), qi(),4;5(), rg(t)). A robot simulator in MATLAB® that uses Simulink® and SimMe-
chanics ™ has been developed. This simulator incorporates dynamic effects that are not considered
in the dynamic model (1), such as joint flexibility due to indirect drives. The link-side and motor-
side joint positions are denoted by ¢ € R® and 6 € RS, respectively. The control law implemented
in the motor-side corresponds to feedforward plus a PID feedback controller:

. t
uzug(t)—l—KpO—}-KvO—{—Kl/ 0 (v) dv, (22)
0

where uj(7) represents the motor-side time-optimal torques. The tracking error in motor-side is
0(t) := 04(t) — 0(r), where the motor-side reference 64(t) = Ggqj(t), with G the diagonal
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Figure 3. Simulation results of the time-optimal trajectory on six-axis industrial robot.

matrix of gear ratios. The feedback gains Kp, Kv, and K| are constant matrices to achieve a
certain closed-loop servo bandwidth for both simulations and experiments. The motor-side torque
commands u(¢)™ € R® are presented in Figure 3(a), which feature large peaks at those instants
when ug (t) change suddenly. This implies that the actuators’ limits, #,;, and u,,x, are exceeded.
Likewise, the readings of a three-axis accelerometer, mounted at the robot’s end-effector, exhibit
sudden acceleration changes and large overshoots. These acceleration overshoots are due to exci-
tations of the vibration modes related to joint flexibility of indirect drives. The motor-side tracking
errors 0 (t) € R® and the Cartesian-space tracking errors ¥ () € R3 are presented in Figure 3(b).
Due to the non-zero initial and final accelerations required by pure time-optimal solutions, the ini-
tial and final tracking errors are comparatively large. In Figure 3(c), the feedback PID torques are
presented. Because the trajectory changes in accelerations are too fast to follow, the PID feedback
controller overreacts to such fast-changing trajectory, generating the peaks shown in Figure 3(c).

6. IMPOSING ACCELERATION CONSTRAINTS AND PENALIZING TOTAL JERK

The aforementioned simulation results suggest that pure time-optimal trajectories and feedfor-
ward torques are bound to cause severe degradation of performance. Nevertheless, time-optimal
solutions are crucial to increase robot productivity. We therefore incorporate acceleration con-
straints and penalize a measure of total jerk, leading to near time-optimal solutions that are feasible
for implementation at the expense of a modest increase in the traveling time 7 r. Consider first
incorporating symmetric joint-space acceleration constraints, —§ (s) < §4(s) < §(s), where the
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Figure 4. Profile of joint-space acceleration constraints.

inequalities are understood componentwise. For each joint, we propose the acceleration constraint
G;(s),i = 1,...,n, with the profile shown in Figure 4, where §;"™* is the maximum acceleration
allowed for the i-th joint. The parameters s and s are adjustable and chosen preferably small. From

the expression for ¢ 4(s) in (3), the joint-space acceleration constraints are written as follows:
—§(5) S h"(s)b(s) + I'(s)als) < §(s). (23)

Notice that inequalities (23) do not impose additional constraints to explicitly satisfy by c(s), which
would otherwise significantly decrease the likelihood of tightness for 1/./6*(s) < 1/c*(s). How-
ever, even when c(s) does not explicitly feature in (23), imposing these constraints reduces the
feasible search region, which in turn shall inevitably decrease the likelihood of tightness. Finally, in
order to discretize inequalities (23) with the discretization scheme presented in Section 4, we simply
evaluate (23) at the grid points, 51, 52, ..., SN, to obtain the following:

—§(sk) < h"(s)br + R (si)ak < §(s), k=1,2,...,N, (24)
which are affine in ay and by, thus preserving convexity when incorporated into problem (20).

6.1. Penalizing a measure of total jerk

In order to trade off time-optimality, we use a measure of total jerk § € R”. Interestingly, using
either jerk ¢ or torque derivative © will lead in both cases to results that do not destroy convexity
of problem (20). However, torque derivative shall lead to a result that explicitly imposes additional
constraints to satisfy by ¢(s), which significantly reduces the likelihood of 1/,/b*(s) < 1/c*(s)
for tightness. In our particular application, we initially used torque derivative to trade off time-
optimality, which led to numerical results whereby tightness of 1/+/b*(s) < 1/c*(s) was no longer
attained. In contrast, using instead jerk ¢ leads to additional constraints that do not explicitly fea-
ture c(s). In this case, exact tightness for our particular application was consistently achieved. The
forthcoming derivation leads to a different outcome but follows similar lines as those presented in
[9] for . Consider trading off the traveling time ¢ » against the following measure of total jerk:*

ty
o= [ il 25)
0
with A being a weighting parameter and [|§||, := Y ;_, |§:|. Notice that Jex can be simplified:

*Even though the two-norm || || is convex in g, notice that § is not the optimization variable, but it can be written in
terms of the optimization functions as follows:

G =h"(s)b(s)c(s) + k" (s)b'(s)c(s) + k" (s)a(s)c(s) + h'(s)a’(s)c(s),
which is not an affine transformation in a(s), b(s), and c(s). By the composition rule of convex functions [10], §

would need to be affine in a(s), b(s), and c(s) for ||§||2 to be convex, which is clearly not the case. It turns out, as
shown in the forthcoming derivation, this property can be circumvented when using instead the one-norm ||| .
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dg; dd;
Jerk—A/ ”q” dt—AZ/ |q1|dl—/\2/ q d _AZ/ q
i=1
n N-1 } ( ) ( )| (26)
%AZZ |Gi (sj4+1) — Gi (s5)| o AZZ gi s]+1maxqz s;
i=1 j=1 oo

where dividing by g™ aims to non-dimensionalize the objective function, which improves

numerical stability when trying out a wide range of values for A, from very small to rather large.

The objective function (26) is nonlinear because the absolute value function | - | is nonlin-
ear, that is, piecewise linear. In order to have a linear objective function, consider introducing
the following slack variables: e;;, i = 1,...,n, and j = 1,...,N — 1, such that Vi, j
\iji (Sj4+1) —gi(s j)| < {7 e;;. Thus, the objective function (26) is equivalent to a linear objective
and inequality constraints:

n N-—1
Jierktin = A Y > eij.such that |Gi(sj 1) — Gi(s;)| < G eij. Vi j. 27)

i=1j=1
The constraints |Eji(sj+1) —éji(sj)| < §i™e;j,i =1,...,n,and j = 1,..., N — 1 are expressed
compactly by defining e; := (e1j ex; -+ enj )T € R", j = 1,...,N — 1. Therefore, these

constraints can be written in vector form:
—e; *qmax §éd(sj+1)_éd(sj) Se]' *qmax, j =1,...,N—1,

where the notation e ; * §™** means element-wise vector multiplication. By explicitly substituting
Gq(s) = h"(s)b(s) + h'(s)a(s), it is obtained forall j = 1,..., N —I:

—ej %G <h"(sj41)bjy1 +h'(sjy1)aj1 —h"(sj))b; —h'(sj)aj <e; xg™. (28)

As mentioned beforehand, inequalities (28) do not explicitly impose any additional constraints
to satisfy by c(sx), which would not be the case had we considered instead torque derivative 7.
Therefore, the following final convex formulation is obtained, which makes it possible to incorpo-
rate acceleration constraints with the profile of Figure 4, and to trade off time-optimality against a
measure of total jerk through the weighting parameter A:

N-2

minimize [(1 —a)As1(d(04) + do) + Y Asi(di + ds1)
k=2
n N-1
+ (I —a)Asy—1(dn-1 + d(l—)):| +AY D e
i=1j=1

subjectto by = s2,by = s?,cl = S0,CN = S

% = a;(sp)ax + ax(si)bx + as(sp)cr + as(sy)

k
Tmin £ T T Tmax

2ck
by —1]|,

—§ (sg) < h"(s)bx + ' (sp)ax < §(sk)
k=1,...,N

<bhr+1
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bj+1=bj = Asjlaj+1+aj)

—e; %™ <[h"(sj4+1)bj41 + R (sj41)a+1

[ 2
(c1 —d

i 2

2

[c(04) —d(04)

c(10) —d(1o)

—h"(sj)bj —h'(sj)aj] <ej*§™™

<c(04) +d(0y) (29)
2

<c¢+d, 1=2,...,N-1

< c(lo) +d(1-),

2

where ay, by, ¢k, 7k , di, and e ; are the optimization variables and the rest is all data.

7. EXPERIMENTAL RESULTS ON SIX-AXIS INDUSTRIAL MANIPULATOR

We proceed to carry out experiments on the real six-axis industrial manipulator FANUC M16iB,
which is described in Appendix A. The near time-optimal trajectory and feedforward torques
(q3(t).q5(t).45(r).T}(r)) are generated using formulation (29), for which the same baseline
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Figure 5. Near time-optimal solutions generated when solving problem (29) for A = 0.02.
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parameters as in Section 5 are used. Additionally, the parameters for acceleration constraints of
Figure 4 are set to s = 0.02, 5 = 0.98, and §™ = (60 60 60 30 30 30) " rad/sec?.

The near time-optimal solutions generated when solving problem (29) for A = 0.02 are presented
in Figure 5, which should be compared against the pure time-optimal solutions of Figure 2. Notice
from the near time-optimal torques in Figure 5(a) that u7 is still required to saturate at some time
instants because the solutions are near time-optimal. Nevertheless, the transitions occur smoothly in
a non-zero amount of time. Likewise, these torques are not required to saturate at the beginning and
end of the trajectory, but instead, smoothly grow from and decay to the required gravity torques for
home position. These important benefits come at the cost a modest increase in the traveling time,
ty = 4.238s, that is, this near time-optimal solution is slower than the pure time-optimal solution
by only 0.791 s.

Importantly, exact tightness is still attained, that is, ¢*(s) = /b*(s) Vs € [0, 1], which means
that for our specific conditions, optimization problem (29) generates solutions that are dynamically
feasible with respect to the full dynamic model (1). Likewise, the pseudo-acceleration § has been
rendered smaller and smoother. As clearly shown in Figure 5(d), this has the effect on g of effec-
tively eliminating the sudden acceleration changes. Finally, notice that exact zero accelerations are
indeed enforced at the beginning and end of the trajectory, with smooth growth from and decay to O.

7.1. Experimental results of near time-optimal solutions

The near time-optimal solutions of Figure 5 are implemented on the real robotic system running at
1 kHz sampling rate. We implement the exact same control law given in (22), where the feedback
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Figure 6. Experimental results for the near time-optimal solutions with A = 0.02.
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gains Kp, Kv, and K| are exactly the same for simulations and experiments. The experimental
results are given in Figure 6. Notice that the torque commands u(t)°™ from Figure 6(a) are rather
consistent with the optimal feedforward torques of Figure 5(a). Even though these near time-optimal
torques and trajectories represent the fastest motions achievable by the actual manipulator, the torque
commands do not seem to exceed the maximum and minimum torque limits.

The joint-space motor-side tracking errors 8 (t) € R® are presented in Figure 6(b), all of which
are visibly better than the ones obtained in simulations for the pure time-optimal solution. The
Cartesian-space tracking errors ¥ (t) € R in Figure 6(b), which are measured with a CompuGauge
3D measurement system briefly described in Appendix A, seem also superior than the tracking errors
obtained in simulation for the pure time-optimal solution. Notice that the accelerometer readings do
not exhibit those large acceleration overshoots because of joint flexibility. Finally, the experimental
PID feedback torques u ()™ are presented in Figure 6(c). The role of the feedback part of the control
law is to compensate for uncertainty and disturbances not considered in dynamic model (1). Clearly,
the feedback controller does not excessively overreact in order to track this fast-changing trajectory.

8. CONCLUSIONS

In this paper, we presented the problem of time-optimal trajectory planning of robot manipulators
along predetermined geometric paths. We aimed to improving existing algorithms, by requiring that
the time-optimal trajectories and feedforward torques be dynamically feasible with respect to the
full nonlinear dynamic model, which included viscous friction. We presented the formulation as a
mathematical optimization problem, which strategically differed from existing formulations, so that
it would allow us to readily propose a convex relaxation with a reasonable likelihood to solve exactly
the original non-convex problem. We then developed a discretization scheme to obtain a numerical
solution. Even though there is no guarantee of exact tightness for all possible scenarios, in our
particular case scenario, the proposed convex relaxation solved exactly the problem of time-optimal
trajectory planning with full dynamic model. Throughout the paper, the effects of such fast-changing
trajectories on three crucial variables were analyzed, namely, the tracking errors, applied torques,
and a three-axis accelerometer mounted at the robot’s end-effector.

An extended problem formulation was then presented that incorporated acceleration constraints
and traded off time-optimality against a measure of total jerk. These incorporations were chosen so
as to preserve convexity and to prevent significantly decreasing the likelihood of exact tightness,
although it was admitted that likelihood of tightness is still decreased because adding constraints will
inevitably reduce the feasible search region. Nevertheless, for our particular application, exact tight-
ness was consistently attained under many different parameters tried out by the authors. Acceleration
constraints and penalization of the measure of total jerk both proved useful from real experiments on
a six-axis industrial manipulator. The near time-optimal solutions represent the fastest optimal solu-
tions achievable by the real robot manipulators without seriously degrading system performance.
This brings modest contributions to existing algorithms, but also an important experimental study
on this classical subject. For other applications with trouble scenarios whereby exact tightness might
not be attained, the optimal solution to our convex relaxation could be used as the initial guess for a
sequential convex optimization procedure.

APPENDIX A: EXPERIMENTAL SETUP OF SIX-AXIS INDUSTRIAL MANIPULATOR

Throughout this paper, we apply the proposed algorithms on a six-axis industrial manipulator,
namely, the FANUC M-16i B/20 robot, courtesy of FANUC Corporation. This multi-joint manipu-
lator is shown in Figure A.1(a) together with additional hardware components; it is a medium-size
industrial robot capable of carrying objects with weights up to 20kg at a maximum speed of
2000 mm/s. We have attached to the robot’s end-effector an ‘L’-shape payload, made from steel and
weighting 18.37 kg. Each motor of the M-16i B robot is equipped with a built-in encoder to measure
joint position in the motor-side, that is, at the gearboxes’ input shaft. The M-16i B robot commercial
controller utilizes position and velocity feedback for control, which is fixed and does not offer flexi-
bility in the modification of control algorithms. The connection diagram of hardware components in
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Figure A.1. Industrial robot FANUC M-16iB and its hardware connection diagram.

Figure A.1(b) makes it possible to bypass the commercial robot controller and implement our own
control algorithms.

The control algorithms are designed in MATLAB® and Simulink® on the host PC that runs a
Windows platform. Then these control algorithms are implemented for experiments on the target
PC, for which the MATLAB® toolbox xPC Target ™ is conveniently used. The host PC and target
PC are connected via Ethernet as depicted by the hardware diagram in Figure A.1(b). After the con-
troller design is performed in the host PC, the corresponding real-time code is loaded into the target
PC through the Ethernet connection. The motor torque commands are computed by our own control
algorithms, running on the target PC, and then converted to current commands for the FANUC robot
controller, which delivers such a current. When the control algorithms are running on the target PC,
the connection between the two computers is automatically disabled such that real-time execution
of the algorithms in the target PC is guaranteed. The sampling rates of all the sensor signals as well
as the real-time controller are set to 1 kHz.

A three-axis accelerometer mounted on the robot’s payload is used to monitor the effects of
near time-optimal trajectories. For this purpose, we use an inertial measurement unit from Analog
Devices ADIS16400, which includes a three-axis accelerometer and a three-axis gyroscope. Like-
wise, a three-dimensional position measurement system, known as CompuGauge 3D [21], is utilized
to measure the coordinates (x, y, z) of the end-effector tool center point, which gives the ground
truth for performance evaluation.
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